A Probabilistic Model of Lexical and Syntactic Access and Disambiguation
نویسنده
چکیده
The problems of access – retrieving linguistic structure from some mental grammar – and disambiguation – choosing among these structures to correctly parse ambiguous linguistic input – are fundamental to language understanding. The literature abounds with psychological results on lexical access, the access of idioms, syntactic rule access, parsing preferences, syntactic disambiguation, and the processing of garden-path sentences. Unfortunately, it has been difficult to combine models which account for these results to build a general, uniform model of access and disambiguation at the lexical, idiomatic, and syntactic levels. For example psycholinguistic theories of lexical access and idiom access and parsing theories of syntactic rule access have almost no commonality in methodology or coverage of psycholinguistic data. This paper presents a single probabilistic algorithm which models both the access and disambiguation of linguistic knowledge. The algorithm is based on a parallel parser which ranks constructions for access, and interpretations for disambiguation, by their conditional probability. Low-ranked constructions and interpretations are pruned through beam-search; this pruning accounts, among other things, for the garden-path effect. I show that this motivated probabilistic treatment accounts for a wide variety of psycholinguistic results, arguing for a more uniform representation of linguistic knowledge and for the use of probabilisticallyenriched grammars and interpreters as models of human knowledge of and processing of language.
منابع مشابه
A Probabilistic Model of Lexical and Access and Disambiguation
The problems of access-retrieving linguistic structure from some mental grammor -and disomblguatlon-choosing among these structures to correctly parse ambiguous linguistic input-are fundamental to language understanding. The literature abounds with psychological results on lexical access, the access of idioms, syntactic rule access, parsing preferences, syntactic disombiguation, and the process...
متن کاملTree-gram Parsing: Lexical Dependencies and Structural Relations
This paper explores the kinds of probabilistic relations that are important in syntactic disambiguation. It proposes that two widely used kinds of relations, lexical dependencies and structural relations, have complementary disambiguation capabilities. It presents a new model based on structural relations, the Tree-gram model, and reports experiments showing that structural relations should ben...
متن کاملThe Relationship between Syntactic and Lexical Complexity in Speech Monologues of EFL Learners
: This study aims to explore the relationship between syntactic and lexical complexity and also the relationship between different aspects of lexical complexity. To this end, speech monologs of 35 Iranian high-intermediate learners of English on three different tasks (i.e. argumentation, description, and narration) were analyzed for correlations between one measure of sy...
متن کاملThe Effect of Reducing Lexical and Syntactic Complexity of Texts on Reading Comprehension
The present study investigated the effect of different types of text simplification (i.e., reducing the lexical and syntactic complexity of texts) on reading comprehension of English as a Foreign Language learners (EFL). Sixty female intermediate EFL learners from three intact classes in Tabarestan Language Institute in Tehran participated in the study. The intact classes were assigned to three...
متن کاملA Model-Driven Probabilistic Parser Generator
Existing probabilistic scanners and parsers impose hard constraints on the way lexical and syntactic ambiguities can be resolved. Furthermore, traditional grammar-based parsing tools are limited in the mechanisms they allow for taking context into account. In this paper, we propose a model-driven tool that allows for statistical language models with arbitrary probability estimators. Our work on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cognitive Science
دوره 20 شماره
صفحات -
تاریخ انتشار 1996